CMA-ES with Optimal Covariance Update and Storage Complexity

نویسندگان

  • Oswin Krause
  • Dídac Rodríguez Arbonès
  • Christian Igel
چکیده

The covariance matrix adaptation evolution strategy (CMA-ES) is arguably one of the most powerful real-valued derivative-free optimization algorithms, finding many applications in machine learning. The CMA-ES is a Monte Carlo method, sampling from a sequence of multi-variate Gaussian distributions. Given the function values at the sampled points, updating and storing the covariance matrix dominates the time and space complexity in each iteration of the algorithm. We propose a numerically stable quadratic-time covariance matrix update scheme with minimal memory requirements based on maintaining triangular Cholesky factors. This requires a modification of the cumulative step-size adaption (CSA) mechanism in the CMA-ES, in which we replace the inverse of the square root of the covariance matrix by the inverse of the triangular Cholesky factor. Because the triangular Cholesky factor changes smoothly with the matrix square root, this modification does not change the behavior of the CMA-ES in terms of required objective function evaluations as verified empirically. Thus, the described algorithm can and should replace the standard CMA-ES if updating and storing the covariance matrix matters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steady-State Selection and Efficient Covariance Matrix Update in the Multi-objective CMA-ES

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) combines a mutation operator that adapts its search distribution to the underlying optimization problem with multicriteria selection. Here, a generational and two steady-state selection schemes for the MO-CMA-ES are compared. Further, a recently proposed method for computationally efficient adaptation of the search ...

متن کامل

A Simple Yet Efficient Rank One Update for Covariance Matrix Adaptation

In this paper, we propose an efficient approximated rank one update for covariance matrix adaptation evolution strategy (CMA-ES). It makes use of two evolution paths as simple as that of CMA-ES, while avoiding the computational matrix decomposition. We analyze the algorithms’ properties and behaviors. We experimentally study the proposed algorithm’s performances. It generally outperforms or per...

متن کامل

THE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...

متن کامل

A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity

This report proposes a simple modification of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for high dimensional objective functions, that reduces the internal time and space complexity from quadratic to linear. The covariance matrix is constrained to be diagonal and the resulting algorithm, sep-CMA-ES, samples each coordinate independently. Because the model complexity is reduce...

متن کامل

The CMA Evolution Strategy: A Tutorial

3 Adapting the Covariance Matrix 10 3.1 Estimating the Covariance Matrix From Scratch . . . . . . . . . . . . . . . . 10 3.2 Rank-μ-Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Rank-One-Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 A Different Viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.2 Cumulation: Uti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016